Math 3450 - Homework # 1 - Sets Part A - Computations

Part 1 - Set builder notation

- 1. Find all the elements from the set $\{n \in \mathbb{Z} \mid 1 \le n^2 \le 100\}$.
- 2. Let $S = \{1, 5, 7\}$ and $T = \{-1, 0, 10, 5\}$. Find all the elements in the set $X = \{a + b \mid a \in S, b \in T\}$.
- 3. Let $S = \{1, 5, 7\}$. Find all the elements in the set $Y = \{a^2 \mid a \in S\}$.
- 4. List all of the elements from $S = \{3k^2 + 1 \mid k \in \mathbb{Z} \text{ and } -1 \le k < 4\}$
- 5. List 5 elements from the set $S = \{2x 3y \mid x, y \in \mathbb{Z}\}.$
- 6. Use set-builder notation to write the set of all positive odd numbers.

Part 2 - Basic set operations

- 7. Let $A = \{1, 5, -12, 100, 1/3, \pi\}$, $B = \{5, 1, -12, 18, -1/3\}$, $C = \{10, -1, 0\}$, $D = \{1, 2\}$, and $E = \{1, -1\}$. Calculate the following:
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) $A \cap C$
 - (d) $A \cap \emptyset$
 - (e) $B \cup \emptyset$
 - (f) $D \times E$
 - (g) $(D \cap A) \times (E \cup D)$
 - (h) $C \times D$
 - (i) A B
 - (j) C A
 - (k) $A \emptyset$

- (l) $A \cup B \cup C \cup D$
- (m) $A \cap B \cap D$
- (n) $A \cap B \cap C$
- 8. Let $A = \{1\}$. List the elements of the power set $\mathcal{P}(A)$.
- 9. Let $B = \{-1, 3\}$. List the elements of the power set $\mathcal{P}(B)$.
- 10. Let $C = \{2, 4, 6\}$. List the elements of the power set $\mathcal{P}(C)$.

Part 3 - Families of sets

- 11. Let $A_n = \{x \in \mathbb{Z} \mid -n \le x \le n\}.$
 - (a) List the elements in the sets A_1 , A_2 , A_3 , and A_4 .
 - (b) Calculate $\bigcap_{n=2}^{\infty} A_n$ and $\bigcup_{n=5}^{\infty} A_n$.
- 12. Let $A_n = \{-2n, 0, 2n\}.$
 - (a) List the elements in the sets A_1 , A_2 , A_3 , and A_4 .
 - (b) Calculate $\bigcap_{n \in \mathbb{N}} A_n$ and $\bigcup_{n \in \mathbb{N}} A_n$.
- 13. In each of the following examples, the sets are intervals in the real line.

 - (d) Calculate $\bigcup_{n \in \mathbb{Z}} (n, n+1)$ and $\bigcap_{n \in \mathbb{Z}} (n, n+1)$. Draw a picture.